Quantitative Aptitude Ques 978

Question: In $ \Delta ABC, $ $ \angle A=30{}^\circ , $ $ \angle B=60{}^\circ . $ Find $ \angle C $ in circular measure.

Options:

A) $ \frac{2{{\pi }^{c}}}{3} $

B) $ \frac{3{{\pi }^{c}}}{4} $

C) $ \frac{{{\pi }^{c}}}{6} $

D) $ \frac{{{\pi }^{c}}}{2} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • In $ \Delta ABC, $ $ \angle A+\angle B+\angle C=180{}^\circ $ [by angle sum property] $ \angle C=180{}^\circ -(30{}^\circ +60{}^\circ )=90{}^\circ $ $ \because $ $ 180{}^\circ =\pi radian $

$ \therefore $ $ 90{}^\circ =\frac{\pi }{180{}^\circ }\times 90{}^\circ $

$ \therefore $ $ \angle C=\frac{\pi }{2}radian $