Quantitative Aptitude Ques 938

Question: Two poles of equal heights are standing opposite to each other on either side of a road which is 100 m wide from a point between them on road. Angles of elevation of their tops are $ 30{}^\circ $ and $ 60{}^\circ $ The height of each pole in metre) is

Options:

A) $ 25\sqrt{3} $

B) $ 20\sqrt{3} $

C) $ 28\sqrt{3} $

D) $ 30\sqrt{3} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Let the height of two poles be h m each. Given, distance between two poles $ =100m $ Let the distance of first pole from the point $ =xm $ Then, the distance of second pole from the point $ =(100-x)m $ In $ \Delta ABO, $ $ \tan 30{}^\circ =\frac{h}{x} $

$ \Rightarrow $ $ \frac{1}{\sqrt{3}}=\frac{h}{x}=\sqrt{3}h=x $ … (i) From $ \Delta DOC, $ $ \tan 60{}^\circ =\frac{h}{100-x} $

$ \Rightarrow $ $ \sqrt{3}=\frac{h}{100-x} $

$ \Rightarrow $ $ \sqrt{3}(100-x)=h $

$ \Rightarrow $ $ \sqrt{3}(100-\sqrt{3}h)=h $ [from Eq. (i)]

$ \Rightarrow $ $ 100\sqrt{3}-3h=h $

$ \Rightarrow $ $ 4h=100\sqrt{3} $
$ \Rightarrow $ $ h=25\sqrt{3}m $