Quantitative Aptitude Ques 932
Question: Directions: In the following questions, two equations I and II are given. You have to solve both the equation and give answer.
I. $ \frac{13}{\sqrt{x}}+\frac{9}{\sqrt{x}}=\sqrt{x} $ II. $ y^{4}-\frac{{{(13\times 2)}^{9/2}}}{\sqrt{y}}=0 $
Options:
A) If $ x>y $
B) If $ x\ge y $
C) If $ x<y $
D) If $ x\le y $
E) If $ x=y $ or the relationship cannot be established
Show Answer
Answer:
Correct Answer: C
Solution:
- I. $ \frac{13}{\sqrt{x}}+\frac{9}{\sqrt{x}}=\sqrt{x} $
$ \Rightarrow $ $ 22=(\sqrt{x})(\sqrt{x}) $
$ \Rightarrow $ $ x=22 $ II. $ y^{4}-\frac{{{(13\times 2)}^{9/2}}}{\sqrt{y}}=0 $
$ \Rightarrow $ $ {y^{4+\frac{1}{2}}}={{(26)}^{9/2}} $
$ \Rightarrow $ $ {y^{9/2}}={{(26)}^{9/2}} $
$ \Rightarrow $ $ y=26 $
$ \therefore $ $ y>x $