Quantitative Aptitude Ques 924

Question: The cost of an apple is twice that of a banana and the cost of a banana is 25% less than that of a guava. If the cost of each type of fruit increases by 10%, then the percentage increase in the cost of 4 bananas, 2 apples and 3 guavas is

Options:

A) 10%

B) 12%

C) 16%

D) 18%

Show Answer

Answer:

Correct Answer: A

Solution:

  • Let CP of 1 guava be 71.

$ \therefore $ CP of 1 banana $ =1-\frac{25}{100}\times 1=Rs\text{.}\frac{3}{4} $ Similarly, CP of 1 apple $ =2\times \frac{3}{4}=Rs\text{.}\frac{3}{2} $ New prices, 1 guava $ =1+\frac{1}{10}=1.1 $ 1 banana $ =\frac{3}{4}+\frac{10}{100}\times \frac{3}{4}=\frac{33}{40} $ 1 apple $ =\frac{3}{2}+\frac{1}{10}\times \frac{3}{2}=\frac{33}{20} $

$ \therefore $ Original price of (4 bananas, 2 apples and 3 guavas) $ =( 4\times \frac{3}{4}+2\times \frac{3}{2}+3\times 1 ) $ $ =(3+3+3)=9 $ New price $ =( 4\times \frac{33}{40}+2\times \frac{33}{20}+3\times 1.1 ) $ $ =(3.3+3.3+3.3)=9.9 $

$ \therefore $ Percentage increase $ =\frac{9.9-9}{9}\times 100 $ $ =\frac{0.9}{9}\times 100=10 $ %