Question: The base of a conical tent is 19.2 m in diameter and its height is 2.8 m. The area $ (in{m^{2}}) $ of the canvas required to put up such a tent is nearly (take $ \pi =\frac{22}{7} $ )
Options:
A) 3017.10
B) 3170
C) 301.71
D) 30.17
Show Answer
Answer:
Correct Answer: C
Solution:
- Radius of the circular base, $ r=\frac{19.2}{2}=9.6m $ $ h=2.8m $
Slant height, $ l=\sqrt{h^{2}+b^{2}}=\sqrt{{{(2.8)}^{2}}+{{(9.6)}^{2}}} $
$ =\sqrt{7.84+92.16} $
$ =\sqrt{100}=10m $
$ \therefore $ Area of the canvas = Surface area of cone
$ =\frac{22}{7}\times 9.6\times 10=301.71m^{2} $