A) $ \sqrt{3}\sin \theta $
B) $ \sqrt{2}\cos \theta $
C) $ \sqrt{2}\sin \theta $
D) $ \sqrt{3}\cos \theta $
Correct Answer: C
$ \Rightarrow $ $ {{\cos }^{2}}\theta +{{\sin }^{2}}\theta +2\sin \theta \cos \theta =2{{\cos }^{2}}\theta $
$ \Rightarrow $ $ 2\sin \theta \cos \theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta $
$ \Rightarrow $ $ 2\sin \theta \cos \theta =(\cos \theta -\sin \theta )(\cos \theta +\sin \theta ) $
$ \therefore $ $ \cos \theta -\sin \theta =\frac{2\sin \theta \cos \theta }{(\cos \theta +\sin \theta )} $ $ =\frac{2\sin \theta \cos \theta }{\sqrt{2}\cos \theta }=\sqrt{2}\sin \theta $