Quantitative Aptitude Ques 885
Question: The value of $ \frac{\tan 27{}^\circ +\cot 63{}^\circ }{\tan 27{}^\circ (\sin 25{}^\circ +\cos 65{}^\circ )} $ is
Options:
A) $ cosec25{}^\circ $
B) $ 2\tan 27{}^\circ $
C) $ \sin 25{}^\circ $
D) $ \tan 65{}^\circ $
Show Answer
Answer:
Correct Answer: A
Solution:
- Given, $ \frac{\tan 27{}^\circ +\cot 63{}^\circ }{\tan 27{}^\circ (\sin 25{}^\circ +\cos 65{}^\circ )} $
$ =\frac{\tan 27{}^\circ +\cot (90{}^\circ -27{}^\circ )}{\tan 27{}^\circ [\sin 25{}^\circ +\cos (90{}^\circ -25{}^\circ )]} $
$ [\because \cot (90{}^\circ -\theta )=tan\theta andcos(90{}^\circ -\theta )=\sin \theta ] $
$ =\frac{\tan 27{}^\circ +\tan 27{}^\circ }{\tan 27{}^\circ (\sin 25{}^\circ +\sin 25{}^\circ )} $
$ =\frac{2\tan 27{}^\circ }{\tan 27{}^\circ (2\sin 25{}^\circ )}=cosec25{}^\circ $