Quantitative Aptitude Ques 882

Question: Directions: In the following questions two equations numbered I and II are given. You have to solve both the equation and given answer. [Bank of Baroda (PO) 2011]

I. $ 3x^{2}-19x+28=0 $ II. $ 5y^{2}-18y+16=0 $

Options:

A) If $ x>y $

B) If $ x\ge y $

C) If $ x<y $

D) If $ x\le y $

E) If $ x=y $ or the relationship cannot be established

Show Answer

Answer:

Correct Answer: A

Solution:

  • I. $ 3x^{2}-19x+28=0 $

$ \Rightarrow $ $ 3x^{2}-12x-7x+28=0 $

$ \Rightarrow $ $ 3x(x-4)-7(x-4)=0 $

$ \Rightarrow $ $ (3x-7)(x-4)=0 $

$ \Rightarrow $ $ x=4, $ $ \frac{7}{3} $ II. $ 5y^{2}-18y+16=0 $

$ \Rightarrow $ $ 5y^{2}-10y-8y+16=0 $

$ \Rightarrow $ $ 5y(y-2)-8(y-2)=0 $

$ \Rightarrow $ $ (5y-8)(y-2)=0 $

$ \Rightarrow $ $ y=2, $ $ \frac{8}{5} $

$ \therefore $ $ x>y $