A) 7 : 5
B) 4 : 3
C) 8 : 5
D) 7 : 6
Correct Answer: D
$ \Rightarrow $ $ 8\times 8x^{3}=a^{3} $ Taking cube roots, $ 4x=a $ … (i) Surface area of parallelepiped $ =2(lb+bh+hl) $ $ =2(2x\times 4x+4x\times 8x+8x\times 2x) $ $ =2(8x^{2}+32x^{2}+16x^{2}) $ $ =112x^{2}units $ Surface area of cube $ =6a^{2},units $
$ \therefore $ Ratio of surface area of parallelepiped and cube $ =\frac{112x^{2}}{6a^{2}}=\frac{112x^{2}}{6\times 16x^{2}} $ [from Eq. (i)] $ =7/6 $
$ \therefore $ Required ratio = 7: 6