Quantitative Aptitude Ques 836

Question: Which of the following are not the sides of a right angled triangle?

Options:

A) $ 3, $ $ 4, $ $ 5 $

B) $ 1, $ $ 1, $ $ \sqrt{2} $

C) $ 1, $ $ \sqrt{3}, $ $ 2 $

D) $ \sqrt{3}, $ $ \sqrt{4}, $ $ \sqrt{5} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • We know that, the sides of right angle triangle always follow Pythagoras theorem, i.e. $ {{\text{(Hypotenuse)}}^{2}}\text{=(1st}side{{)}^{2}}\text{+(2nd}side{{)}^{2}} $ By hit and trial method, From option [a], $ {{(5)}^{2}}={{(3)}^{2}}+{{(4)}^{2}} $

$ \Rightarrow $ $ 25=9+16=25 $ Hence, option [a] contains sides of right angled triangle. From option [b] $ {{(\sqrt{2})}^{2}}={{(1)}^{2}}+{{(1)}^{2}} $

$ \Rightarrow $ $ 2=1+1=2 $ Hence, option [b] contains sides of right angled triangle. From option [c]

$ \Rightarrow $ $ {{(2)}^{2}}={{(1)}^{2}}+\sqrt{{{(3)}^{2}}} $

$ \Rightarrow $ $ 4=1+3=4 $ Hence, option [c] contains the sides of right angled triangle. From option [d],

$ \Rightarrow $ $ {{(\sqrt{5})}^{2}}={{(\sqrt{3})}^{2}}+{{(\sqrt{4})}^{2}} $

$ \Rightarrow $ $ 5\ne 3+4=7 $ Hence, option [d] does not contains the sides of right angled triangle.