Quantitative Aptitude Ques 833

Question: Directions: In each question below one or more equation (s) is / are provided. On the basis of these you have to find out relation between p, q and give answer. [SBI (PO) 2000]

I. $ 6q^{2}+\frac{1}{2}=\frac{7}{2}q $
II. $ 12p^{2}+2=10p $

Options:

A) If $ p=q $

B) If $ p>q $

C) If $ p<q $

D) If $ p\ge q $

Show Answer

Answer:

Correct Answer: D

Solution:

  • I. $ 6q^{2}+\frac{1}{2}=\frac{7}{2}q $
    $ \Rightarrow $ $ \frac{12q^{2}+1}{2}=\frac{7}{2}q $

$ \Rightarrow $ $ 12q^{2}+1=7q $

$ \Rightarrow $ $ 12q^{2}-7q+1=0 $

$ \Rightarrow $ $ 12q^{2}-3q-4q+1=0 $

$ \Rightarrow $ $ 3q(4q-1)-(4q-1)=0 $

$ \Rightarrow $ $ (4q-1)(3q-1)=0 $
$ \Rightarrow $ $ q=\frac{1}{3}, $ $ \frac{1}{4} $ II. $ 12p^{2}+2-10p=0 $

$ \Rightarrow $ $ 12p^{2}-10p+2=0 $

$ \Rightarrow $ $ 12p^{2}-6p-4p+2=0 $

$ \Rightarrow $ $ 6p(2p-1)(2p-1)=0 $

$ \Rightarrow $ $ (6p-2)(2p-1)=0 $

$ \Rightarrow $ $ p=\frac{1}{2}, $ $ \frac{1}{3} $

$ \therefore $ $ p\ge q $