Quantitative Aptitude Ques 831

Question: Directions: In each question below one or more equation (s) is / are provided. On the basis of these you have to find out relation between p, q and give answer. [SBI (PO) 2000]

I. $ 4q^{2}+8q=4q+8 $
II. $ p^{2}+9p=2p-12 $

Options:

A) If $ p=q $

B) If $ p>q $

C) If $ p<q $

D) If $ p\ge q $

Show Answer

Answer:

Correct Answer: C

Solution:

  • I. $ 4q^{2}+8q=4q+6 $

$ \Rightarrow $ $ 4q^{2}+4q-8=0 $

$ \Rightarrow $ $ q^{2}+q-2=0 $

$ \Rightarrow $ $ q^{2}+2q-q-2=0 $

$ \Rightarrow $ $ q(q+2)-1(q+2)=0 $

$ \Rightarrow $ $ (q+2)(q-1)=0 $
$ \Rightarrow $ $ q=-,2,1 $ II. $ p^{2}+9p=2p-12 $

$ \Rightarrow $ $ p^{2}+7p+12=0 $

$ \Rightarrow $ $ p^{2}+3p+4p+12=0 $

$ \Rightarrow $ $ p(p+3)+4(p+3)=0 $

$ \Rightarrow $ $ (p+3)(p+4)=0 $
$ \Rightarrow $ $ p=-,3, $ $ -4 $

$ \therefore $ $ p<q $