A) 30%
B) 10%
C) 33.1%
D) 25%
Correct Answer: C
$ \therefore $ Volume of cube $ =a^{3}. $ Now, new side of cube $ =a\times \frac{110}{100}=1.1aunit $
$ \therefore $ New volume of cube $ ={{(1.1a)}^{3}}=1.331a $
$ \therefore $ Required increase percentage $ =\frac{1.331a^{3}-a^{3}}{a^{3}}\times 100 $ $ =\frac{0.331a^{3}}{a^{3}}\times 100=33.1 $ % Alternate Method Increase in each side $ =x=y=z=10 $ %
$ \therefore $ Total increase $ =[ x+y+z+\frac{xy+yz+zx}{100}+\frac{xyz}{{{(100)}^{2}}} ] $ % $ =3x+\frac{3x^{2}}{100}+\frac{x^{3}}{{{(100)}^{2}}} $ $ =30+\frac{300}{100}+\frac{1000}{10000} $ $ =30+3+0.1=33.1 $ %