Quantitative Aptitude Ques 829

Question: If each side of a cube is increased by 10%, then the volume of the cube will be increased

Options:

A) 30%

B) 10%

C) 33.1%

D) 25%

Show Answer

Answer:

Correct Answer: C

Solution:

  • Suppose, each side of cube $ =aunit $

$ \therefore $ Volume of cube $ =a^{3}. $ Now, new side of cube $ =a\times \frac{110}{100}=1.1aunit $

$ \therefore $ New volume of cube $ ={{(1.1a)}^{3}}=1.331a $

$ \therefore $ Required increase percentage $ =\frac{1.331a^{3}-a^{3}}{a^{3}}\times 100 $ $ =\frac{0.331a^{3}}{a^{3}}\times 100=33.1 $ % Alternate Method Increase in each side $ =x=y=z=10 $ %

$ \therefore $ Total increase $ =[ x+y+z+\frac{xy+yz+zx}{100}+\frac{xyz}{{{(100)}^{2}}} ] $ % $ =3x+\frac{3x^{2}}{100}+\frac{x^{3}}{{{(100)}^{2}}} $ $ =30+\frac{300}{100}+\frac{1000}{10000} $ $ =30+3+0.1=33.1 $ %