Question: The value of k for which the lines $ 5x+3y+2=0 $ and $ 3x-ky+6=0 $ are perpendicular, is
Options:
A) 5
B) 4
C) 3
D) 2
Show Answer
Answer:
Correct Answer: A
Solution:
- Slope of line $ 5x+3y=0 $
$ \Rightarrow $ $ m _1=\frac{-,5}{3} $
Slope of line $ 3x-ky+6=0 $
$ \Rightarrow $ $ m _2=\frac{3}{k}. $
Since, the two lines are perpendicular to each other.
$ \therefore $ $ m _1m _2=-1 $
$ \frac{-5}{3}\times \frac{3}{k}=-1 $
$ \Rightarrow $ $ k=5 $