Quantitative Aptitude Ques 818

Question: The angles of elevation of the top of a tower from two points A and B lying on the horizontal through the foot of the tower are respectively $ 15{}^\circ $ and $ 30{}^\circ . $ If A and B are on the same side of the tower and $ AB=48m, $ then the height of the tower is

Options:

A) $ 24\sqrt{3}m $

B) $ 24m $

C) $ 24\sqrt{2}m $

D) $ 96m $

Show Answer

Answer:

Correct Answer: B

Solution:

  • Let height of the tower be $ hm $ and $ BC=xm $ In $ \Delta ACD, $ $ \tan 15{}^\circ =\frac{h}{x+48} $

$ \Rightarrow $ $ \tan (45{}^\circ -30{}^\circ )=\frac{h}{x+48} $ By the formula, $ \frac{\tan 45{}^\circ -\tan 30{}^\circ }{1+\tan 45{}^\circ \times \tan 30{}^\circ }=\frac{h}{x+48} $

$ \Rightarrow $ $ \frac{1-\frac{1}{\sqrt{3}}}{1+1\times \frac{1}{\sqrt{3}}}=\frac{h}{x+48} $

$ \Rightarrow $ $ \frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{h}{x+48} $

$ \Rightarrow $ $ \frac{\sqrt{3}-1}{\sqrt{3}+1}\times \frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{h}{x+48} $

$ \Rightarrow $ $ \frac{2(2-\sqrt{3})}{2}=\frac{h}{x+48} $

$ \therefore $ $ 2-\sqrt{3}=\frac{h}{x+48} $ … (i) In $ \Delta BCD, $ $ \tan 30{}^\circ =\frac{h}{x} $

$ \Rightarrow $ $ \frac{1}{\sqrt{3}}=\frac{h}{x} $

$ \Rightarrow $ $ \sqrt{3}n=x $ … (ii) From Eq. (i), $ 2-\sqrt{3}=\frac{h}{\sqrt{3}h+48} $

$ \Rightarrow $ $ 2\sqrt{3}h-3h+(2-\sqrt{3})48=h $

$ \Rightarrow $ $ h+3h-2\sqrt{3}h=(2-\sqrt{3})\times 48 $

$ \Rightarrow $ $ 4h-2\sqrt{3}h=(2-\sqrt{3})\times 48 $

$ \Rightarrow $ $ 2h(2-\sqrt{3})=(2-\sqrt{3})\times 48 $

$ \Rightarrow $ $ 2h=48 $

$ \therefore $ $ h=24m $