Quantitative Aptitude Ques 79
Question: Directions: In each of the following questions two equations I and II are given. You have to solve both the equations and find out values of x, y and give answer. [LIC (AAO) 2014]
I. $ \frac{12}{\sqrt{(x)}}+\frac{8}{\sqrt{(x)}}=\sqrt{(x)} $ II. $ y^{4}-\frac{{{(18)}^{9/2}}}{\sqrt{(y)}}=0 $
Options:
A) If $ x>y $
B) If $ x\le y $
C) If $ x<y $
D) If $ x\ge y $
E) If relationship cannot be established
Show Answer
Answer:
Correct Answer: A
Solution:
- I. $ \frac{12}{\sqrt{x}}+\frac{8}{\sqrt{x}}=\sqrt{x} $
$ \Rightarrow $ $ \frac{12\times 8}{\sqrt{x}}=\sqrt{x} $
$ \Rightarrow $ $ 12+8=x $
$ \Rightarrow $ $ x=20 $
II. $ y^{4}-\frac{{{(18)}^{9/2}}}{\sqrt{y}}=0 $
$ \Rightarrow $ $ y^{4}=\frac{{{(18)}^{9/2}}}{\sqrt{y}} $
$ \Rightarrow $ $ {{(y)}^{9/2}}={{(18)}^{9/2}} $
$ \Rightarrow $ $ y=18 $
Hence, $ x>y $