Quantitative Aptitude Ques 780

Question: Directions: In the following questions, two equations numbered I and II are given. You have to solve both the equations and give answer.

I. $ \frac{12\times 4}{{x^{4/7}}}-\frac{3\times 4}{{x^{4/7}}}={x^{10/7}} $ II. $ y^{3}+783=999 $

Options:

A) If $ x>y $

B) If $ x\ge y $

C) If $ x<y $

D) If $ x\le y $

E) If $ x=y $ or the relationship cannot be established

Show Answer

Answer:

Correct Answer: D

Solution:

  • I. $ \frac{12\times 4}{{x^{4/7}}}-\frac{3\times 4}{{x^{4/7}}}={x^{10/7}} $

$ \Rightarrow $ $ \frac{48-12}{{x^{4/7}}}={x^{10/7}} $

$ \Rightarrow $ $ 36=x^{2} $
$ \Rightarrow $ $ x=\pm 6 $ II. $ y^{3}=999-783=216 $

$ \Rightarrow $ $ y=6 $

$ \therefore $ $ x\le y $