Quantitative Aptitude Ques 756

Question: The locus of a point whose difference of distance from points (3, 0) and $ (-3,0) $ is 4, is

Options:

A) $ \frac{x^{2}}{4}-\frac{y^{2}}{5}=1 $

B) $ \frac{x^{2}}{5}-\frac{y^{2}}{4}=1 $

C) $ \frac{x^{2}}{2}-\frac{y^{2}}{3}=1 $

D) $ \frac{x^{2}}{3}-\frac{y^{2}}{2}=1 $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Let the point be $ (x,y). $ Then. $ \sqrt{{{(x-3)}^{2}}+y^{2}}-\sqrt{{{(x+3)}^{2}}+y^{2}}=4 $

$ \Rightarrow $ $ \sqrt{{{(x-3)}^{2}}+y^{2}}=4+\sqrt{{{(x+3)}^{2}}+y^{2}} $ On squaring both sides, we get $ {{(x-3)}^{2}}+y^{2}=16+{{(x+3)}^{2}}+y^{2}+8\sqrt{{{(x+3)}^{2}}+y^{2}} $
$ \Rightarrow $ $ -6x-6x-16=8\sqrt{{{(x+3)}^{2}}+y^{2}} $

$ \Rightarrow $ $ -12x-16=8\sqrt{{{(x+3)}^{2}}+y^{2}} $

$ \Rightarrow $ $ -3x-4=2\sqrt{{{(x+3)}^{2}}+y^{2}} $ Again, on squaring both sides, we get $ 9x^{2}+16+24x=4,[{{(x+3)}^{2}}+y^{2}] $

$ \Rightarrow $ $ 9x^{2}+16+24x=4,[x^{2}+9+6x+y^{2}] $

$ \Rightarrow $ $ 9x^{2}+16+24x=4x^{2}+36+24x+4y^{2} $

$ \Rightarrow $ $ 5x^{2}-4y^{2}=20 $
$ \Rightarrow $ $ \frac{x^{2}}{4}-\frac{y^{2}}{5}=1 $