Quantitative Aptitude Ques 744

Question: The angles of a triangle are in Arithmetic Progression. The ratio of the least angles in degrees to the number of radians in the greatest angle is $ 60:\pi . $ The angles (in degrees) are

Options:

A) $ 30{}^\circ , $ $ 60{}^\circ , $ $ 90{}^\circ $

B) $ 35{}^\circ , $ $ 55{}^\circ , $ $ 90{}^\circ $

C) $ 40{}^\circ , $ $ 50{}^\circ , $ $ 90{}^\circ $

D) $ 40{}^\circ , $ $ 55{}^\circ , $ $ 85{}^\circ $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Let the angles of a triangle in AP be $ (a-d){}^\circ , $ $ a{}^\circ , $ $ (a+d){}^\circ . $

$ \therefore $ $ a-d+a+a+d=180{}^\circ $ [since, sum of all angles of triangle is $ 180{}^\circ $ ]

$ \Rightarrow $ $ 3a=180{}^\circ $
$ \Rightarrow $ $ a=60{}^\circ $ Now, given ratio of least angle to largest angle is $ 60:\pi , $ then $ \frac{a-d}{a+b}=\frac{60{}^\circ }{\pi }=\frac{60{}^\circ }{180{}^\circ }=\frac{1}{3} $

$ \Rightarrow $ $ \frac{60{}^\circ -d}{60{}^\circ +d}=\frac{1}{3} $

$ \Rightarrow $ $ 180{}^\circ -3d=60{}^\circ +d $

$ \Rightarrow $ $ 4d=120{}^\circ $
$ \Rightarrow $ $ d=30{}^\circ $

$ \therefore $ Angles of triangle are $ a-d=60{}^\circ -30{}^\circ =30{}^\circ $ $ a=60{}^\circ $ and $ a+d=60{}^\circ +30{}^\circ =90{}^\circ $