Quantitative Aptitude Ques 736

Question: One pipe fills a water tank three times faster than another pipe. If the two pipes to get can fill the empty tank in 36 min, then in 36 min, then how much time will the slower pipe alone take to fill the tank?

Options:

A) 1 h 21 min

B) 2 h

C) 1 h 48 min

D) 2 h 24 min

Show Answer

Answer:

Correct Answer: D

Solution:

  • Let the slower pipe fills a tank in $ xh, $ then faster pipe fills the tank in $ \frac{x}{3}h. $ Now, $ \frac{1}{x}+\frac{1}{x/3}=\frac{1}{36}\times 60h $

$ \Rightarrow $ $ \frac{1}{x}+\frac{3}{x}=\frac{60}{36} $

$ \Rightarrow $ $ \frac{4}{x}=\frac{60}{36} $
$ \Rightarrow $ $ =\frac{12}{5}=2h24\min $