Quantitative Aptitude Ques 732

Question: Directions: In the following questions two equations numbered I and II are given. You have to solve both the equations and give answer.

I. $ \frac{2^{5}+{{(11)}^{3}}}{6}=x^{3} $ II. $ 4y^{3}=-\ (589\div 4)+5y^{3} $

Options:

A) If $ x>y $

B) If $ x\ge y $

C) If $ x<y $

D) If $ x\le y $

E) If $ x=y $ or the relationship cannot be established

Show Answer

Answer:

Correct Answer: A

Solution:

  • I. $ \frac{2^{5}+{{(11)}^{3}}}{6}=x^{3} $
    $ \Rightarrow $ $ \frac{32+1331}{6}=x^{3} $

$ \Rightarrow $ $ \frac{1363}{6}=x^{3} $
$ \Rightarrow $ $ x=\sqrt[3]{227.17} $ II. $ 4y^{3}=-\frac{(589)}{4}+5y^{3} $

$ \Rightarrow $ $ -y^{3}=\frac{-589}{4} $
$ \Rightarrow $ $ y=\sqrt[3]{147.25} $

$ \therefore $ $ x>y $