Quantitative Aptitude Ques 730

Question: Directions: In the following questions two equations numbered I and II are given. You have to solve both the equations and give answer.

I. $ \frac{18}{x^{2}}+\frac{6}{x}-\frac{12}{x^{2}}=\frac{8}{x^{2}} $ II. $ y^{3}+9.68+5.64=16.95 $

Options:

A) If $ x>y $

B) If $ x\ge y $

C) If $ x<y $

D) If $ x\le y $

E) If $ x=y $ or the relationship cannot be established

Show Answer

Answer:

Correct Answer: C

Solution:

  • I. $ \frac{18}{x^{2}}+\frac{6}{x}-\frac{12}{x^{2}}=\frac{8}{x^{2}} $
    $ \Rightarrow $ $ \frac{6}{x^{2}}+\frac{6}{x}=\frac{8}{x^{2}} $

$ \Rightarrow $ $ \frac{6}{x}=\frac{2}{x^{2}} $
$ \Rightarrow $ $ 6x^{2}=2x $

$ \Rightarrow $ $ 2x(1-3x)=0 $
$ \Rightarrow $ $ x=0, $ $ \frac{1}{3} $ II. $ y^{3}=16.95-(9.68+5.64=16.95-15.32 $

$ \Rightarrow $ $ y^{3}=1.63 $
$ \Rightarrow $ $ y=1.176 $

$ \therefore $ $ y>x $