Quantitative Aptitude Ques 725

Question: A cylinder and a cone have equal radii of their bases and equal heights. If their curved surface areas are in the ratio 8 : 5, then the ratio of their radius and height is

Options:

A) 1: 2

B) 1 : 3

C) 2 : 3

D) 3 : 4

Show Answer

Answer:

Correct Answer: D

Solution:

  • Radius of cylinder = Radius of cone = r Height of cylinder = Height of cone = h

$ \therefore $ $ \frac{Surfaceareaofcylinder}{Surfaceareaofcone}=\frac{2\pi rh}{\pi rl}=\frac{8}{5} $
$ \Rightarrow $ $ 2h=\frac{8l}{5} $
Now, $ 2h=\frac{8l}{5} $ On squaring both sides’ we get $ 4h^{2}=\frac{8^{2}l^{2}}{5^{2}} $
$ \Rightarrow $ $ 4h^{2}=\frac{8^{2}}{5^{2}}(h^{2}+r^{2}) $

$ \Rightarrow $ $ 4h^{2}-\frac{64h^{2}}{25}=\frac{8^{2}}{5^{2}}r^{2} $

$ \Rightarrow $ $ \frac{(100-64)h^{2}}{25}=\frac{64}{25}r^{2} $

$ \Rightarrow $ $ \frac{r^{2}}{h^{2}}=\frac{36}{64} $
$ \Rightarrow $ $ \frac{r}{h}=\frac{6}{8}=\frac{3}{4} $