Quantitative Aptitude Ques 713

Question: The value of $ {{\sin }^{2}}1{}^\circ +{{\sin }^{2}}3{}^\circ +{{\sin }^{2}}5{}^\circ +…+{{\sin }^{2}}89{}^\circ $ is

Options:

A) $ 22 $

B) $ 22\frac{1}{2} $

C) $ 23 $

D) $ 22\frac{1}{4} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ {{\sin }^{2}}1{}^\circ +{{\sin }^{2}}3{}^\circ +…+{{\sin }^{2}}45{}^\circ +…+ $ $ {{\sin }^{2}}(90{}^\circ -3{}^\circ )+sin^{2}(90{}^\circ -1{}^\circ ) $ $ ={{\sin }^{2}}1{}^\circ +{{\sin }^{2}}3{}^\circ +…+{{\sin }^{2}}45{}^\circ +…+ $ $ {{\cos }^{2}}3{}^\circ +{{\cos }^{2}}1{}^\circ $ $ =(1\times 22)+{{( \frac{1}{\sqrt{2}} )}^{2}}=22+\frac{1}{2}=22\frac{1}{2} $