Quantitative Aptitude Ques 713
Question: The value of $ {{\sin }^{2}}1{}^\circ +{{\sin }^{2}}3{}^\circ +{{\sin }^{2}}5{}^\circ +…+{{\sin }^{2}}89{}^\circ $ is
Options:
A) $ 22 $
B) $ 22\frac{1}{2} $
C) $ 23 $
D) $ 22\frac{1}{4} $
Show Answer
Answer:
Correct Answer: B
Solution:
- $ {{\sin }^{2}}1{}^\circ +{{\sin }^{2}}3{}^\circ +…+{{\sin }^{2}}45{}^\circ +…+ $ $ {{\sin }^{2}}(90{}^\circ -3{}^\circ )+sin^{2}(90{}^\circ -1{}^\circ ) $
$ ={{\sin }^{2}}1{}^\circ +{{\sin }^{2}}3{}^\circ +…+{{\sin }^{2}}45{}^\circ +…+ $ $ {{\cos }^{2}}3{}^\circ +{{\cos }^{2}}1{}^\circ $
$ =(1\times 22)+{{( \frac{1}{\sqrt{2}} )}^{2}}=22+\frac{1}{2}=22\frac{1}{2} $