Question: If the radius of circle is increased by 50%, then what will be the percentage increase in its area?
Options:
A) 125%
B) 100%
C) 50%
D) 75%
E) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
- Area of circle $ =\pi r^{2} $
New radius $ =r+\frac{50}{100}r=\frac{3r}{2} $
New area $ =\pi {{( \frac{3r}{2} )}^{2}}=\frac{9\pi r^{2}}{4} $
$ \therefore $ Increase percentage $ =\frac{\frac{9\pi r^{2}}{4}-\pi r^{2}}{\pi r^{2}}\times 100 $ %
$ =\frac{5\pi r^{2}}{4,\times ,\pi r^{2},},\times 100 $ %=125%