Question: If $ \frac{p^{2}}{q^{2}}+\frac{q^{2}}{p^{2}}=1, $ then what is the value of $ (p^{6}+q^{6})? $
Options:
A) 0
B) 1
C) 2
D) 3
Show Answer
Answer:
Correct Answer: A
Solution:
- $ \frac{p^{2}}{q^{2}}=\frac{q^{2}}{p^{2}}=1 $
$ \Rightarrow $ $ p^{4}+q^{4}=p^{2}q^{2} $
$ \Rightarrow $ $ p^{4}+q^{4}-p^{2}q^{2}=0 $
Now, $ p^{6}+q^{6}=(p^{2}+q^{2})(p^{4}+q^{4}-p^{2}q^{2}) $
$ =(p^{2}+q^{2})\cdot (0)=0 $