Quantitative Aptitude Ques 625

Question: If $ 2x=\sec A $ and $ \frac{2}{x}=\tan A, $ then $ 2( x^{2}-\frac{1}{x^{2}} ) $ is equal to

Options:

A) $ \frac{1}{2} $

B) $ \frac{1}{4} $

C) $ \frac{1}{8} $

D) $ \frac{1}{16} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ ( 2x+\frac{2}{x} )( 2x-\frac{2}{x} )=(\sec A+\tan A)(\sec A-\tan A) $
    $ \Rightarrow $ $ 4( x^{2}-\frac{1}{x^{2}} )=( \frac{1+\sin A}{\cos A} )( \frac{1-\sin A}{\cos A} )=\frac{{{\cos }^{2}}A}{{{\cos }^{2}}A}=1 $

$ \Rightarrow $ $ 2( x^{2}-\frac{1}{x^{2}} )=\frac{1}{2} $