Question: The perimeters of two similar triangles are 30 cm and 20 cm, respectively. If one side of the first triangle is 9 cm. Determine the corresponding side of the second triangle.
Options:
A) 13.5 cm
B) 6 cm
C) 5 cm
D) 15 cm
Show Answer
Answer:
Correct Answer: B
Solution:
- By the property of triangle similarity,
$ \frac{Perimeter,of,first,triangle}{perimeter,of,second,\text{triangle }}=\frac{Side,of,first,triangle}{Side,of,second,triangle} $ Let side of second triangle be x cm.
$ \Rightarrow $ $ \frac{30}{20}=\frac{9}{x} $
$ \Rightarrow $ $ 30\times x=9\times 20 $
$ \Rightarrow $ $ x=\frac{9\times 20}{30}=6,cm $