Quantitative Aptitude Ques 607
Question: If $ \frac{x}{y}=\frac{4}{5}, $ then the value of $ ( \frac{4}{7}+\frac{2y-x}{2y+x} ) $ is
Options:
A) $ \frac{3}{7} $
B) $ \frac{8}{7} $
C) 1
D) 2
Show Answer
Answer:
Correct Answer: C
Solution:
- $ x=\frac{4y}{5} $
Now, $ ( \frac{4}{7}+\frac{2y-x}{2y+x} )=( \frac{4}{7}+\frac{2y-\frac{4y}{5}}{2y+\frac{4y}{5}} ) $
$ =\frac{4}{7}+\frac{6y}{5}\times \frac{5}{14y}=\frac{7}{7}=1 $