Quantitative Aptitude Ques 607

Question: If $ \frac{x}{y}=\frac{4}{5}, $ then the value of $ ( \frac{4}{7}+\frac{2y-x}{2y+x} ) $ is

Options:

A) $ \frac{3}{7} $

B) $ \frac{8}{7} $

C) 1

D) 2

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ x=\frac{4y}{5} $ Now, $ ( \frac{4}{7}+\frac{2y-x}{2y+x} )=( \frac{4}{7}+\frac{2y-\frac{4y}{5}}{2y+\frac{4y}{5}} ) $ $ =\frac{4}{7}+\frac{6y}{5}\times \frac{5}{14y}=\frac{7}{7}=1 $