Question: The greatest common divisor of $ {3^{3^{333}}}+1 $ and $ {3^{3^{334}}}+1 $ is
Options:
A) $ {3^{3^{333}}}+1 $
B) 20
C) 2
D) 1
Show Answer
Answer:
Correct Answer: D
Solution:
- Given, $ {3^{3^{333}}}+1 $ and $ {3^{3^{334}}}+1=27^{333}+1 $
and $ 27^{334}+1 $
Now $ (x^{m}+a^{m}) $ is divisible by $ (x+a) $ for odd m.
$ \therefore $ $ (27+1) $ divides $ (27^{333}+1) $ and does not divide $ (27^{334}+1). $
$ \therefore $ HCF of $ (27^{333}+1) $ and $ (27^{334}+1) $ is 1.