Question: A sells an item at 20% profit to B. B sells it to C at 10% profit. C sells it to D at Rs. 16 profit. Difference between the cost price of D and cost price of A was Rs. 500. How much did B pay to A for the item?
Options:
A) Rs. 1240
B) Rs. 1815
C) Rs. 1440
D) Rs. 1450
E) Rs. 1400
Show Answer
Answer:
Correct Answer: B
Solution:
- Let cost price of A be x.
Selling price for $ A=x+\frac{20}{100}x $
$ =\frac{120x}{100} $ = cost price for B
Selling price for $ B=\frac{120x}{100}+( \frac{10}{100} )( \frac{120x}{100} ) $
$ =\frac{132x}{100}=CP,for,C $
Selling price for $ C=\frac{132x}{100}+16=CP,for,D $
According to the question,
$ ( \frac{132x}{100}+16 )-(x)=500 $
$ \Rightarrow $ $ \frac{132x+1600-100x}{100}=500 $
$ \Rightarrow $ $ 32x=500\times 100-1600 $
$ \Rightarrow $ $ x=\frac{50000-1600}{32}=\frac{48400}{32}=\frac{12100}{8} $
$ \therefore $ Cost price for
$ B=\frac{120\times x}{100}=\frac{120}{100}\times \frac{12100}{8}=Rs.,1815 $