A) 46 km
B) 20 km
C) 10 km
D) 4 km
Correct Answer: D
$ \therefore $ $ \frac{D}{\frac{5}{2}}=t+\frac{6}{60} $
$ \Rightarrow $ $ \frac{2D}{5}=t+\frac{1}{10} $
$ \Rightarrow $ $ t=\frac{2D}{5}-\frac{1}{10} $ Case II When he goes at a rate of 3 km/h. He reaches 10 min earlier
$ \therefore $ $ \frac{D}{3}=t-\frac{10}{60} $
$ \Rightarrow $ $ \frac{D}{3}=t-\frac{1}{6} $
On putting value of t from Eq. (i).
$ \frac{D}{3}=\frac{2D}{5}-\frac{1}{10}-\frac{1}{6} $
$ \Rightarrow $ $ \frac{2D}{5}-\frac{D}{3}=\frac{1}{10}+\frac{1}{6} $
$ \Rightarrow $ $ \frac{6D-5D}{15}=\frac{3+5}{30} $
$ \Rightarrow $ $ D=\frac{8\times 15}{30}=4km $