Quantitative Aptitude Ques 520

Question: A boat covers 12 km upstream and 18 km downstream in 3 h, while it covers 36 km upstream and 24 km downstream in $ 6\frac{1}{2}h. $ What is the speed of the current?

Options:

A) 1.5 km/h

B) 1 km/h

C) 2 km/h

D) 2.5 km/h

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] If the speed of boat in still water be x km/h and speed of current by $ ykm/h. $ Then, speed in downstream $ =(x+y) $ Speed in upstream $ =(x-y) $ According to the question, $ \frac{12}{x-y}+\frac{18}{x+y}=3 $ …. (i) $ \frac{36}{x-y}+\frac{24}{x+y}=\frac{13}{2} $ …. (ii) On multiplying Eq. (i) by 3 and subtracting Eq. (ii) from Eq. (i), $ \frac{54}{x+y}-\frac{24}{x+y}=9-\frac{13}{2} $
    $ \Rightarrow $ $ \frac{30}{x+y}=\frac{5}{2} $

$ \Rightarrow $ $ x+y=12 $ … (iii) On substituting the value $ (x+y) $ of from Eq. (iii), we get $ \frac{12}{x-y}+\frac{18}{12}=3 $

$ \Rightarrow $ $ \frac{12}{x-y}=3-\frac{3}{2}=\frac{3}{2} $

$ \Rightarrow $ $ x-y=\frac{12\times 2}{3}=8 $ …. (iv) Speed of current $ =\frac{1}{2} $ (speed downstream

  • Speed upstream) $ =\frac{1}{2}(12-8)=2,km/h $