Quantitative Aptitude Ques 458

Question: Directions: In each of the following questions there are two equations. You have to solve both equations and give answer. [SBI (PO) 2015]

I. $ x^{2}-10x+24=0 $ II. $ 3y^{2}-19y+28=0 $

Options:

A) If $ x>y $

B) If $ x\ge y $

C) If $ x<y $

D) If $ x\le y $

E) If $ x=y $ of relation cannot be established

Show Answer

Answer:

Correct Answer: B

Solution:

  • I. $ x^{2}-10x+24=0 $

$ \Rightarrow $ $ x^{2}-6x-4x+24=0 $

$ \Rightarrow $ $ x,(x-6)-4,(x-6)=0 $

$ \Rightarrow $ $ x=4, $ 6 II. $ 3y^{2}-19y+28=0 $

$ \Rightarrow $ $ 3y^{2}-12y-7y+28=0 $

$ \Rightarrow $ $ 3y,(y-4)-7,(y-4)=0 $

$ \Rightarrow $ $ y=\frac{7}{3}, $ 4

$ \therefore $ $ x\ge y $