Quantitative Aptitude Ques 457

Question: Directions: In each of the following questions there are two equations. You have to solve both equations and give answer. [SBI (PO) 2015]

I. $ x^{2}-13x+40=0 $ II. $ y^{2}-11y+28=0 $

Options:

A) If $ x>y $

B) If $ x\ge y $

C) If $ x<y $

D) If $ x\le y $

E) If $ x=y $ of relation cannot be established

Show Answer

Answer:

Correct Answer: A

Solution:

  • I. $ x^{2}-13x+40=0 $

$ \Rightarrow $ $ x^{2}-8x-5x+40=0 $

$ \Rightarrow $ $ x,(x-8)-5,(x-8)=0 $

$ \Rightarrow $ $ x=5, $ $ 8 $ II. $ y^{2}-11y+28=0 $

$ \Rightarrow $ $ y^{2}-7y-4y+28=0 $

$ \Rightarrow $ $ y,(y-7)-4,(y-7)=0 $

$ \Rightarrow $ $ y=4, $ 7

$ \therefore $ $ x>y $