A) $ \frac{m^{2}-1}{n^{2}+1} $
B) $ \frac{m^{2}+1}{n^{2}+1} $
C) $ \frac{m^{2}-1}{n^{2}-1} $
D) $ \frac{m^{2}+1}{n^{2}-1} $
Correct Answer: C
$ \therefore $ $ \cot B=n\cot A $ … (i) and $ \sin A=m,\sin B $
$ \Rightarrow $ $ cosec,B=m,cosec,A $ … (ii) On squaring both sides of Eqs. (i) and (ii) and then subtracting Eq. (i) from Eq. (ii), we get $ cose{c^{2}}B-{{\cot }^{2}}B=m^{2}cose{c^{2}}A-n^{2}{{\cot }^{2}}A $
$ \Rightarrow $ $ \frac{m^{2}-n^{2}{{\cos }^{2}}A}{{{\sin }^{2}}A}=1 $
$ \Rightarrow $ $ m^{2}-n^{2}{{\cos }^{2}}A=1-{{\cos }^{2}}A $
$ \therefore $ $ {{\cos }^{2}}A=\frac{m^{2}-1}{n^{2}-1} $