Question: PQ is a chord of length 8 cm of a circle of radius 5 cm. The tangents at P and Q intersect at a point T. Find the length TP.
Options:
A) $ \frac{20}{3},cm $
B) 20 cm
C) 3 cm
D) 4 cm
Show Answer
Answer:
Correct Answer: A
Solution:
- Given, PQ = 8 cm, OP = 5 cm
Then, in $ \Delta OPR, $
$ OR=\sqrt{OP^{2}-PR^{2}}=\sqrt{5^{2}-4^{2}}=3,cm $
Now, in similar $ \Delta TPO $ and $ \Delta PRO, $
$ \frac{TP}{PO}=\frac{RP}{RO} $
$ \Rightarrow $ $ \frac{TP}{5}=\frac{4}{3} $
$ \therefore $ $ TP=\frac{20}{3},cm $