Quantitative Aptitude Ques 381

Question: Directions: In the following questions two equations numbered I and II are given. You have to solve both the equations and give answer.

I. $ 9x-15.45=54.55+4x $ II. $ \sqrt{y+155}-\sqrt{36}=\sqrt{49} $

Options:

A) If $ x>y $

B) If $ x\ge y $

C) If $ x<y $

D) If $ x\le y $

E) If x = y or the relationship cannot be established

Show Answer

Answer:

Correct Answer: E

Solution:

  • I. $ 9x-15.45=54.55+4x $

$ \Rightarrow $ $ 9x-4x=54.55+15.45 $

$ \Rightarrow $ $ 5x=70 $
$ \Rightarrow $ $ x=\frac{70}{5} $
$ \Rightarrow $ $ x=14 $ II. $ \sqrt{y+155}-\sqrt{36}=\sqrt{49} $

$ \Rightarrow $ $ \sqrt{y+155}-6=7 $ On squaring both sides, we get

$ \Rightarrow $ $ {{(\sqrt{y+155})}^{2}}={{(13)}^{2}} $

$ \Rightarrow $ $ y+155=169 $

$ \Rightarrow $ $ y=169-155 $
$ \Rightarrow $ $ y=14 $ Hence, $ x=y $