Quantitative Aptitude Ques 332

Question: The first term of an arithmetic progression is 22 and the last term is $ -11. $ If the sum is 66, the number of terms in the sequence are

Options:

A) 10

B) 12

C) 9

D) 8

Show Answer

Answer:

Correct Answer: B

Solution:

  • Given, $ a=22, $ $ l=-11, $ $ S _{m}=66 $ Let number of terms in sequence = n Then, $ l=a+(n-1),d $

$ \Rightarrow $ $ -11=22+(n-1),d $

$ \Rightarrow $ $ (n-1),d=-,22-11 $

$ \Rightarrow $ $ (n-1),d=-,33 $ … (i) Now, $ S _{n}=\frac{n}{2}[2a+(n-1),d] $

$ \Rightarrow $ $ 66=\frac{n}{2}[2\times 22+(n-1),d] $

$ \Rightarrow $ $ 66=\frac{n}{2}[44-33] $

$ \Rightarrow $ $ 66=\frac{n}{2}\times 11 $
$ \Rightarrow $ $ n=\frac{66\times 2}{11} $

$ \therefore $ $ n=12 $