Quantitative Aptitude Ques 330

Question: Directions: In the following questions two equations numbered I and II are given. You have to solve both the equations and give answer.

I. $ 5x^{2}-18x+9=0 $
II. $ 20y^{2}-13y+2=0 $

Options:

A) If $ x>y $

B) If $ x\ge y $

C) If $ x<y $

D) If $ x\le y $

E) If x = y or the relationship cannot be established

Show Answer

Answer:

Correct Answer: A

Solution:

  • I. $ 5x^{2}-18x+9=0 $

$ \Rightarrow $ $ 5x^{2}-15x-3x+9=0 $

$ \Rightarrow $ $ 5x,(x-3)-3,(x-3)=0 $

$ \Rightarrow $ $ (x-3)(5x-3)=0 $

$ \Rightarrow $ $ x=3, $ $ \frac{3}{5} $ II. $ 20y^{2}-13y+2=0 $

$ \Rightarrow $ $ 20y^{2}-5y-8y+2=0 $

$ \Rightarrow $ $ 5y,(4y-1)-2,(4y-1)=0 $

$ \Rightarrow $ $ (4y-1)(5y-2)=0 $

$ \Rightarrow $ $ y=\frac{1}{4}, $ $ \frac{2}{5} $ Hence, $ x>y $