Quantitative Aptitude Ques 27

Question: The value of is $ \cot \theta \cdot \tan ,(90{}^\circ -\theta )-sec,(90{}^\circ -\theta ) $ $ cosec\theta +({{\sin }^{2}}25{}^\circ +{{\sin }^{2}}65{}^\circ )+ $ $ \sqrt{3},(\tan 5{}^\circ \cdot \tan 15{}^\circ \cdot \tan 30{}^\circ \cdot \tan 75{}^\circ \cdot \tan 85{}^\circ ) $ is

Options:

A) 1

B) $ -1 $

C) 2

D) 0

Show Answer

Answer:

Correct Answer: A

Solution:

  • Expression = $ =\cot \theta \cdot \tan ,(90{}^\circ -\theta )-sec,(90{}^\circ -\theta ) $ $ cosec\theta +({{\sin }^{2}}25{}^\circ +{{\sin }^{2}}65{}^\circ )+\sqrt{3} $ $ (\tan 5{}^\circ \cdot tan15{}^\circ \cdot \tan 30{}^\circ \cdot \tan 75{}^\circ \cdot \tan 85{}^\circ ) $ $ =\cot \theta \cdot \cot \theta -cosec\theta \cdot cosec\theta + $ $ ({{\sin }^{2}}25{}^\circ +{{\cos }^{2}}25{}^\circ )+\sqrt{3}(\tan 5{}^\circ $ $ \cot 5{}^\circ \cdot \tan 15{}^\circ \cot 15{}^\circ \cdot \tan 30{}^\circ ) $ $ \begin{bmatrix} \because \sec ,(90{}^\circ -\theta )=cosec\theta \\ \sin ,(90{}^\circ -\theta )=\cos \theta \\ \tan ,(90{}^\circ -\theta )=\cot \theta \\ \end{bmatrix} $ $ =({{\cot }^{2}}\theta -cose{c^{2}}\theta )+({{\sin }^{2}}25{}^\circ +{{\cos }^{2}}25{}^\circ )+\sqrt{3}\times \frac{1}{\sqrt{3}} $ $ =-1+1+1=1 $ $ [\because {{\sin }^{2}}\theta {{\cos }^{2}}\theta =1,and,{{\cot }^{2}}\theta -cose{c^{2}}\theta =-1] $