Question: The ratio between three angles of a quadrilateral is 14: 8: 11, respectively. The value of the fourth angle of the quadrilateral is $ 63{}^\circ . $ What are the sum of the largest and third largest angles of the quadrilateral? [LIC (AO) 2015]
Options:
A) $ 198{}^\circ $
B) $ 154{}^\circ $
C) $ 182{}^\circ $
D) $ 242{}^\circ $
E) $ 196{}^\circ $
Show Answer
Answer:
Correct Answer: A
Solution:
- The ratio between three angles of a quadrilateral is 14 : 8 : 11 and fourth angle of quadrilateral is $ 63{}^\circ $
Then, we know that
$ 14x{}^\circ +8x{}^\circ +11x{}^\circ +63{}^\circ =360{}^\circ $
$ \Rightarrow $ $ 33x{}^\circ =297 $
$ \Rightarrow $ $ x{}^\circ =9{}^\circ $
Then, the angles of quadrilateral are $ 126{}^\circ , $ $ 72{}^\circ , $ $ 99{}^\circ $ and $ 63{}^\circ $ (given).
$ \therefore $ Largest angle $ =126{}^\circ $
Third largest angle $ =72{}^\circ $
Sum $ =126{}^\circ +72{}^\circ =198{}^\circ $