Quantitative Aptitude Ques 25
Question: If $ x+\frac{1}{x}=9, $ $ (x\ne 0), $ then the value of $ \frac{x^{2}-4x+1}{x^{2}+6x+1} $ is
Options:
A) $ \frac{1}{3} $
B) $ \frac{2}{3} $
C) 3
D) 4
Show Answer
Answer:
Correct Answer: A
Solution:
- $ \frac{x^{2}-4x+1}{x^{2}+6x+1}=\frac{x-4+\frac{1}{x}}{x+6+\frac{1}{x}}=\frac{x+\frac{1}{x}-4}{x+\frac{1}{x}+6} $
$ =\frac{9-4}{9+6}=\frac{5}{15}=\frac{1}{3} $