Question: The tops of two poles of height 24 m and 36 m are connected by a wire. If the wire makes an angle of $ 60{}^\circ $ with the horizontal, then the length of the wire is
Options:
A) $ 8\sqrt{3},m $
B) 8 m
C) $ 6\sqrt{3},m $
D) 6m
Show Answer
Answer:
Correct Answer: A
Solution:
- Let the length of the wire be $ l. $
In $ \Delta ADE, $ $ \sin 60{}^\circ =\frac{DE}{AD} $
[AD = length of wire]
In $ \Delta ADE, $ $ \sin 60{}^\circ =\frac{DE}{AD} $
$ \Rightarrow $ $ \frac{\sqrt{3}}{2}=\frac{36-24}{l} $
$ \Rightarrow $ $ l=\frac{12}{\sqrt{3}}\times 2 $
$ \therefore $ $ l=\frac{24}{\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}}=8\sqrt{3},m $