Quantitative Aptitude Ques 2482
Question: If O is the circumcentre of a $ \Delta ,ABC $ lying inside the triangle, then $ \angle OBC+\angle BAC $ is equal to
Options:
A) $ 60{}^\circ $
B) $ 90{}^\circ $
C) $ 110{}^\circ $
D) $ 120{}^\circ $
Show Answer
Answer:
Correct Answer: B
Solution:
- Let $ \angle A=x{}^\circ $
$ \therefore $ $ \angle BOC=2x{}^\circ $ and $ \angle BOE=x{}^\circ $ Again, let $ \angle OBE=y{}^\circ $ and we have $ \angle OEB=90{}^\circ $ In $ \Delta BOE, $ $ x{}^\circ +y{}^\circ +90{}^\circ =180{}^\circ $
$ \Rightarrow $ $ x{}^\circ +y{}^\circ =90{}^\circ $
$ \therefore $ $ \angle OBC+\angle BAC=90{}^\circ $