Quantitative Aptitude Ques 2475

Question: The volume of a conical tent is 1232 cm am the area of its bases is $ 14,m^{2}. $ Find the length of the canvas required to build the tent, if the canvas is 2 m in width. $ ( take,\pi \frac{22}{7} ) $

Options:

A) 270 m

B) 272 m

C) 276 m

D) 275 m

Show Answer

Answer:

Correct Answer: D

Solution:

  • Let radius of base of conical tent be r cm and its height be hem. Then
    $ \pi r^{2}=154 $
    $ \Rightarrow $ $ r^{2}=154\times \frac{7}{22}=49 $
    $ \Rightarrow $ $ r=7,cm $ and $ \frac{1}{3}\pi r^{2}h=1232 $

$ \Rightarrow $ $ h=1232\times 3\times \frac{7}{22}\times \frac{1}{7\times 7}=24,cm $ Now, $ l=\sqrt{r^{2}+h^{2}}=\sqrt{49+576}=\sqrt{625}=25,cm $

$ \therefore $ Area of required canvas = Curved surface of tent $ =\pi rl $ $ =\frac{22}{7}\times 7\times 25=550,cm^{2} $

$ \therefore $ Length of canvas $ =\frac{550}{2}=275,m $