Question: The volume of a conical tent is 1232 cm am the area of its bases is $ 14,m^{2}. $ Find the length of the canvas required to build the tent, if the canvas is 2 m in width. $ ( take,\pi \frac{22}{7} ) $
Options:
A) 270 m
B) 272 m
C) 276 m
D) 275 m
Show Answer
Answer:
Correct Answer: D
Solution:
- Let radius of base of conical tent be r cm and its height be hem.
Then
$ \pi r^{2}=154 $
$ \Rightarrow $ $ r^{2}=154\times \frac{7}{22}=49 $
$ \Rightarrow $ $ r=7,cm $
and $ \frac{1}{3}\pi r^{2}h=1232 $
$ \Rightarrow $ $ h=1232\times 3\times \frac{7}{22}\times \frac{1}{7\times 7}=24,cm $
Now, $ l=\sqrt{r^{2}+h^{2}}=\sqrt{49+576}=\sqrt{625}=25,cm $
$ \therefore $ Area of required canvas
= Curved surface of tent $ =\pi rl $
$ =\frac{22}{7}\times 7\times 25=550,cm^{2} $
$ \therefore $ Length of canvas $ =\frac{550}{2}=275,m $