Question: A rectangular plot has a concrete path running in the middle of the plot parallel to the breadth of the plot. The rest of the plot is used as a lawn, which has an area of $ 240,m^{2}. $ If the width of the path is 3 m and the length of the plot is greater than its breadth by 2 m, what is the area of the rectangular plot? [LIC (AAO) 2014]
Options:
A) $ 255,m^{2} $
B) $ 168,m^{2} $
C) $ 288,m^{2} $
D) $ 360,m^{2} $
E) $ 224,m^{2} $
Show Answer
Answer:
Correct Answer: C
Solution:
- Given, width of path = 3 m
Area of plot (excluding path) $ =240,m^{2} $
Let breadth of plot = x
Length of plot $ =x+2 $
According to the question,
$ 240=x,(x+2)-3\times x $
$ \Rightarrow $ $ 240=x^{2}-x $
$ \Rightarrow $ $ x^{2}-x-24=0 $
$ \Rightarrow $ $ x^{2}-16x+15x-24=0 $
$ \Rightarrow $ $ x,(x-16)+15,(x-16)=0 $
$ \Rightarrow $ $ (x-16)(x+15)=0 $
$ \therefore $ $ x=16 $
$ \therefore $ Area of plot = Length $ \times $ Breadth
$ =18\times 16=288,m^{2} $