Quantitative Aptitude Ques 2441

Question: In the given figure, $ AB\parallel CD. $ If $ \angle AOC=30{}^\circ $ and $ \angle OAB=100{}^\circ , $ then $ \angle OCD $ is equal to

Options:

A) $ 130{}^\circ $

B) $ 150{}^\circ $

C) $ 80{}^\circ $

D) $ 100{}^\circ $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Let $ \angle OCD=x{}^\circ $ Draw $ OE\parallel AB\parallel CD $ Now, $ AB\parallel OE $ and OA is the transversal.

$ \therefore $ $ \angle OAB+\angle AOE=180{}^\circ $

$ \Rightarrow $ $ \angle BAO+\angle AOC+\angle COE=180{}^\circ $

$ \Rightarrow $ $ 100{}^\circ +30{}^\circ +\angle COE=180{}^\circ $
$ \Rightarrow $ $ \angle COE=50{}^\circ $ Again, $ CD||OE $ and OC is transversal.

$ \Rightarrow $ $ \angle OCD+\angle EOC=180{}^\circ $
$ \Rightarrow $ $ x=130{}^\circ $