Quantitative Aptitude Ques 2406
Question: Directions: In, each of the following questions two equations are given. You have to solve both the equations and find out values of x, y and give answer.
I. $ 2x^{2}-13x+21=0 $ II. $ 5y^{2}-22y+21=0 $
Options:
A) If $ x>y $
B) If $ x\le y $
C) If $ x<y $
D) If $ x\ge y $
E) If relationship between x and y cannot be determined
Show Answer
Answer:
Correct Answer: D
Solution:
- I. $ 2x^{2}-13x+21=0 $
$ \Rightarrow $ $ 2x^{2}-6x-7x+21=0 $
$ \Rightarrow $ $ 2x,(x-3)-7,(x-3)=0 $
$ \Rightarrow $ $ (x-3)(2x-7)=0 $
$ \Rightarrow $ $ x=3, $ $ x=\frac{7}{2} $
II. $ 5y^{2}-22y+21=0 $
$ \Rightarrow $ $ 5y^{2}-15y-7y+21=0 $
$ \Rightarrow $ $ 5y,(y-3)-7,(y-3)=0 $
$ \Rightarrow $ $ (5y-7)(y-3)=0 $
$ \Rightarrow $ $ y=3, $ $ y=\frac{7}{5} $
$ \therefore $ $ x\ge y $