Quantitative Aptitude Ques 2406

Question: Directions: In, each of the following questions two equations are given. You have to solve both the equations and find out values of x, y and give answer.

I. $ 2x^{2}-13x+21=0 $ II. $ 5y^{2}-22y+21=0 $

Options:

A) If $ x>y $

B) If $ x\le y $

C) If $ x<y $

D) If $ x\ge y $

E) If relationship between x and y cannot be determined

Show Answer

Answer:

Correct Answer: D

Solution:

  • I. $ 2x^{2}-13x+21=0 $

$ \Rightarrow $ $ 2x^{2}-6x-7x+21=0 $

$ \Rightarrow $ $ 2x,(x-3)-7,(x-3)=0 $

$ \Rightarrow $ $ (x-3)(2x-7)=0 $
$ \Rightarrow $ $ x=3, $ $ x=\frac{7}{2} $ II. $ 5y^{2}-22y+21=0 $

$ \Rightarrow $ $ 5y^{2}-15y-7y+21=0 $

$ \Rightarrow $ $ 5y,(y-3)-7,(y-3)=0 $

$ \Rightarrow $ $ (5y-7)(y-3)=0 $
$ \Rightarrow $ $ y=3, $ $ y=\frac{7}{5} $

$ \therefore $ $ x\ge y $