Quantitative Aptitude Ques 2405
Question: Directions: In, each of the following questions two equations are given. You have to solve both the equations and find out values of x, y and give answer.
I. $ 4x^{2}-29x+45=0 $ II. $ 3y^{2}-19y+28=0 $
Options:
A) If $ x>y $
B) If $ x\le y $
C) If $ x<y $
D) If $ x\ge y $
E) If relationship between x and y cannot be determined
Show Answer
Answer:
Correct Answer: E
Solution:
- I. $ 4x^{2}-29x+45=0 $
$ \Rightarrow $ $ 4x^{2}-20x-9x+45=0 $
$ \Rightarrow $ $ 4x,(x-5)-9,(x-5)=0 $
$ \Rightarrow $ $ (4x-9)(x-5)=0 $
$ \Rightarrow $ $ x=5, $ $ x=\frac{9}{4} $ II. $ 3y^{2}-19y+28=0 $
$ \Rightarrow $ $ 3y^{2}-12y-7y+28=0 $
$ \Rightarrow $ $ 3y,(y-4)-7,(y-4)=0 $
$ \Rightarrow $ $ (3y-7)(y-4)=0 $
$ \Rightarrow $ $ y=4, $ $ y=\frac{7}{3} $
Hence, relationship between x and y cannot be determined.